Improving Computational Efficiency of Particle Swarm Optimization for Optimal Structural Design
نویسندگان
چکیده
This paper attempts to improve the computational efficiency of the well known particle swarm optimization (PSO) algorithm for tackling discrete sizing optimization problems of steel frame structures. It is generally known that, in structural design optimization applications, PSO entails enormously time-consuming structural analyses to locate an optimum solution. Hence, in the present study it is attempted to lessen the computational effort of the algorithm, using the so called upper bound strategy (UBS), which is a recently proposed strategy for reducing the total number of structural analyses involved in the course of design optimization. In the UBS, the key issue is to identify those candidate solutions which have no chance to improve the search during the optimum design process. After identifying those non-improving solutions, they are directly excluded from the structural analysis stage, diminishing the total computational cost. The performance of the UBS integrated PSO algorithm (UPSO) is evaluated in discrete sizing optimization of a real scale steel frame to AISC-LRFD specifications. The numerical results demonstrate that the UPSO outperforms the original PSO algorithm in terms of the computational efficiency. Received: 10 August 2013; Accepted: 5 October 2013
منابع مشابه
IMPROVING COMPUTATIONAL EFFICIENCY OF PARTICLE SWARM OPTIMIZATION FOR OPTIMAL STRUCTURAL DESIGN
This paper attempts to improve the computational efficiency of the well known particle swarm optimization (PSO) algorithm for tackling discrete sizing optimization problems of steel frame structures. It is generally known that, in structural design optimization applications, PSO entails enormously time-consuming structural analyses to locate an optimum solution. Hence, in the present study it i...
متن کاملAN EFFICIENT HYBRID ALGORITHM BASED ON PARTICLE SWARM AND SIMULATED ANNEALING FOR OPTIMAL DESIGN OF SPACE TRUSSES
In this paper, an efficient optimization algorithm is proposed based on Particle Swarm Optimization (PSO) and Simulated Annealing (SA) to optimize truss structures. The proposed algorithm utilizes the PSO for finding high fitness regions in the search space and the SA is used to perform further investigation in these regions. This strategy helps to use of information obtained by swarm in an opt...
متن کاملPARTICLE SWARM-GROUP SEARCH ALGORITHM AND ITS APPLICATION TO SPATIAL STRUCTURAL DESIGN WITH DISCRETE VARIABLES
Based on introducing two optimization algorithms, group search optimization (GSO) algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is presented and its application to optimal structural design is analyzed. The PS-GSO is used to investigate the spatial truss structures with discr...
متن کاملOPTIMAL GROUND MOTION SCALING USING ENHANCED SWARM INTELLIGENCE FOR SIZING DESIGN OF STEEL FRAMES
Dynamic structural responses via time history analysis are highly dependent to characteristics of selected records as the seismic excitation. Ground motion scaling is a well-known solution to reduce such a dependency and increase reliability to the dynamic results. The present work, formulate a twofold problem for optimal spectral matching and performing consequent sizing optimization based on ...
متن کاملOptimal Design of Shell-and-Tube Heat Exchanger Based on Particle Swarm Optimization Technique
The paper studies optimization of shell-and-tube heat exchangers using the particle swarm optimization technique. A total cost function is formulated based on initial and annual operating costs of the heat exchangers. Six variables – shell inside diameter, tube diameter, baffle spacing, baffle cut, number of tube passes and tube layouts (triangular or square) – are considered as the design para...
متن کامل